
'Settling time' and 'memory': two 
concepts to simplify the dynamic 
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Concepts of "settling time' and 'memory" in a solar collector are introduced and 
explained; they are shown to characterize the collector and the fluid-flow collectively. 
These two characteristics are then used to develop a simplified method for the 
calculation of the fluid temperature within a flat-plate collector. Under all conditions, 
the proposed method can be used with any arbitrary degree of accuracy. The 
temperature is given, in a normalized form, as a function of both time and position 
along the collector. The numerous design and operating variables are lumped in a 
limited number of dimensionless groups 
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Realistic analyses of the fiat-plate solar collector, as a 
dynamic system operating under unsteady conditions, 
have been presented recently. Closed-form mathe- 
matical expressions have been derived to give the fluid 
and absorber-plate temperatures as functions of both 
time and position along the collector 1. These 
expressions, however, are quite complicated and their 
evaluation requires considerable effort and time 2. It 
was such complexity that paved the way for the 
approximate steady-state models which have been 
adopted for many years 3-6. 

This paper introduces two new concepts, the 
"Zero-Input Settling Time' and the 'Memory', which 
are used as a basis to develop a simplified method for 
evaluating the fluid temperature at any position along 
the collector and at any instant of time during the 
sunlight hours or after sunset. The results are com- 
pared with those obtained by other exact elaborate 
techniques, and are found to be accurate under all 
conditions. 

The most simple collector design, with the 
fluid-stream bathing the entire rear surface of a fiat 
absorber plate 4, is considered in this study. Neverthe- 
less, the technique presented and the results obtained 
c a n  be applied to any form of uniformly-irradiated 
collector with only minor changes in the formulation 
of the problem. 

The operation of the collector is assumed here 
to start with sunrise. The method, however, can be 
modified simply for any other starting time. This may 
be the case in practice if operation is confined to a 
part of sunlight hours during which the output is in 
excess of a certain predetermined minimum 5. The 
study is also extended to include the cases if the 
collector operation is continued for a certain period 
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after sunset. This may theoretically be feasible if the 
collector absorber has a very high thermal inertia 
and/or the fluid-stream heat capacity is lowX; other- 
wise nocturnal operation will yield a zero, or even 
negative output e. The after-sunset operation, which 
is impractical for a simple collector, is presented to 
complete the analysis; moreover, it may be important 
for the study of collectors with integrated storage. 

Dynamic fluid-temperature profile 
The simple fiat-plate collector is shown in Fig 1. The 
fluid temperature at any position x a]ong the collector 
and at any time t has been obtained in the following 
forml,2: 

Tf(X, t) = T, e-~X[1 - F(at, fiX)]+ 

7 e - "F(~z ,  d~X)R(t- z) dz (1) 
Zl 

The detailed derivation of this formula, and the 
assumptions upon which it is based, are given else- 
where . The various quantities in Eq (1) are defined as: 

1. X = x / L  0<~X~<I (2) 
is the normalized distance along the collector. 

~ ss cover(s) Absorber 

/ / I E,,, 

Fig I A flat-plate solar collector 

Int. J. Heat & Fluid Flow 0142-727X/84/020113-08503.00 © Butterworth & Co (Publishers) Ltd 113 



M. F. EI-Refaie and M. A. Hashish 

2. t is the time reckoned from sunrise, h 

3. y = U/mpCp h -1 (3) 

4. cp = h/rhfcf dimensionless (4) 

5. ~b = h/mpCp = y h / U  h -~ (5) 

6. a = qJ + y h -1 (6) 

7. or = c#y/a dimensionless (7) 

8. fl = ~bOla = ~b/(1 + Y/O) dimensionless (8) 

9. Tf=(Of-Oa)/(Oe-Oa)~ l dimensionless (9) 

where Of(X, t) is the actual fluid temperature (°C), 
0a is the average ambient air temperature (°C), 
and Tf is a normalized fluid temperature. The 
equilibrium or stagnation temperature 0e is the 
theoretical maximum temperature attained under 
no-flow condition and continuous exposure to the 
maximum radiant input, thus: 

0e = 0a + Hmax/U (10) 

and 

Tf=(Of-Oa) U / H  . . . . .  (11) 

Ti is the normalized fluid temperature at inlet to 
collector. 

10. The function F(a, b) is defined by: 

I: F(a, b) = e -a e-UIo(2(ay) 1/2) du (12) 

where Io is the zero order modified Bessel func- 
tion of the first kind. 

11. R ( t ) = H ( t ) / H ~ a x  0~<R<~l (13) 

is the normalized radiant input (Fig 2). 
12. The limits of the convolution integral zl and z2 

are given by: 

z2 = t (14) 

{0_ for t~< t~ 
z~ = tss for t ~  > tss (15) 

Notation 

a First argument of the function F(a, b), 
dimensionless 

ai Coefficients of the radiant input poly- 
nomial, Eq (31), i = 0, 1 . . . .  , m 

Ai Coefficients of the polynomial [ l ( t - z ) ,  
given by Eq (33), i = 0, 1 . . . . .  m 

b Second argument of the function F(a, b), 
dimensionless 

/~ Switching value of b, given by Eq (22), 
dimensionless 

Bi Coefficients defined by Eq (36), i=  
0 , 1 , . . . , m + n  

C The term independent of 'a '  in the 
expansion of F(a, b) given by Eq (24), 
dimensionless 

C~ Coefficients defined by Eq (25), i=  
0 , 1 , . . . , n  

cf Specific heat of the fluid, Joule/kg °C 
Cp Specific heat of the absorber-plate material, 

Joule/kg °C 
Di Coefficients defined by Eq (35), i-- 

O, 1 , . . . , m  
F A function of two variables, defined by Eq 

(12), dimensionless 
G i Coefficients defined by Eq (39), i=  

0 , 1 , . . . ,  m + n  
h Plate-to-fluid heat transfer coefficient, 

W / m  2 °C 
H Instantaneous rate of radiant energy absor- 

bed by the absorber plate, W/m 2 
Hma, Maximum value of H, W/m 2 
Io Modified zero-order Bessel function of the 

first kind 
L Length of collector (Fig. 1), m 
m Degree of the polynomial expressing the 

normalized radiant input, Eq (31) 
mf Fluid mass rate of flow per unit of plate 

area, kg/m z h 
mp Mass of the absorber plate per unit area, 

kg/m 2 

M 

n 

P, 

R 

t 
tset 

t~s 
Tf 

Tfl  

Tf2 

Ti 

U 

Wb 

X 

X 

Zl 

Z2 

Ot 

y 
g 

0a 
0e 

0f 

or 

¢, 
g, 

Memory at any section of the collector, 
defined by Eq (19), h 
Degree of the polynomial in Eq (24) 
Coefficients defined by Eq (40), i =  
0 , 1 , . . . , m  
Normalized radiant input, defined by Eq 
(13) and shown in Fig 2, dimensionless 
Time reckoned from sunrise, h 
Settling time at any section of the collector, 
defined by Eq (18), h 
Sunset time, h 
Normalized fluid temperature, defined by 
Eq (9) or (11), dimensionless 
Zero-input temperature response, 
dimensionless 
Zero-state temperature response, 
dimensionless 
Normalized fluid temperature at inlet to 
the collector, dimensionless 
Overall collector heat-loss coefficient, 
W/m 2 °C 
Window, shown in Fig 5, dimensionless 
Distance along the collector (Fig 1), m 
Normalized distance along the collector, 
defined by Eq (2), dimensionless 
Lower limit of the convolution integral in 
Eq (1), h 
Higher limit of the convolution integral in 
Eq (1), h 
Parameter defined by Eq (6), h -1 
Dimensionless group defined by Eq (8) 
Parameter defined by Eq (3), h -1 
Value of F(a, b) at a = Wb, dimensionless 
Ambient air temperature, °C 
Equilibrium or stagnation temperature, 
defined by Eq (10), °C 
Fluid temperature at any time and any 
position along the collector, °C 
A dimensionless group defined by Eq (7) 
A dimensionless group defined by Eq (4) 
A parameter defined by Eq (5), h -1 
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Interpretation of the dynamic fluid-temperature 
response 

The fluid temperature Tf(X, t) may be considered as 
the superposition of two components, represented by 
the two terms on the right-hand side of Eq (1). The 
first component is due to the inlet fluid temperature 
Ti, and will be called the inlet-temperature com- 
ponent or the zero-input response. The second com- 
ponent is induced by the radiant input, and will be 
known as the radiation component or the zero-state 
response. The two components will be denoted by 
T~I(X, t) and TIn(X, t) respectively. 

Eq (1) implies that the zero-input response is 
always dependent on time no matter how long has 
elapsed after sunrise. Considering the zero-state 
response, it can be seen from Eqs (1) and (14) or (15) 
that the convolution integral spans a part of the daily 
radiation profile extending from the particular 
moment of interest backward to sunrise (Fig 3). This 
means that all the history of radiant input, up to a 
particular instant, contributes to the instantaneous 
value of fluid temperature. In other words, the collec- 
tor keeps a record of, or compiles, the radiant-input 
variation since sunrise. 

Based on Eq (1), different computational 
methods have been proposed for calculation of the 
fluid temperature 2. All the suggested methods, 
however, are inevitably lengthy. At any section of the 
collector, the required computational effort increases 
as the time t increases. This called for the develop- 
ment of a simplified temperature expression which 
would reduce the computational work. This is 
achieved, in this work, by introducing two new con- 
cepts, settling time and memory. 

Settling t ime and memory 

Study of F(a, b), defined by Eq (12) and displayed 
graphically in Fig 4, is crucial to developing an 
approximation for the dynamic response expressed by 
Eq (1). This monotonic decreasing function will be 
considered only within the finite interval 0 <~ a <~ wb, 
where the function is greater than e and e is a given 
arbitrary accuracy. This is shown in Fig 5. The sub- 

C 

R ( t - z  2 ) 
=R (0) 

R ( t - z  I ) 
=R (t) 

o 9 I It 
R ( t - z  2) R(t -z , )  l 
=R(O) =R(t=)  

Time fror~ 
sunrise 

Fig 3 The part of  the daily radiation profile spanned 
by the convolution integral in Eq (1) (or contributing 
to the fluid temperature at time t) 
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Dynamic analysis of flat-plate collector 
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Fig 5 Window of F(a, b) 
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script of w stands for the second argument of the 
function F(a, b). This is the same as if the graph of 
F(a, b) is being observed through a rectangular- 
shaped window having a width Ws and its left edge 
coincident with the ordinate a = 0. Outside this win- 
dow the value of F(a, b) is considered to be zero, ie: 

F(a, b ) - 0  f o r a >  Wb (16) 

The width of the window Wb increases as the second 
argument b increases and/or  the error e decreases. 

Based on the window concept, both com- 
ponents of the fluid temperature can be simplified. 

Inlet temperature component (zero-input response) 
After a certain time t from sunrise and for a given 
accuracy e, the product (at) reaches the value of the 
window W(~x). For at  > W(~x), the function F(at, [3X) 
can practically be considered to be zero. Accordingly, 
the zero-input response reduces to: 

Tfl = Tie - ' x  for a t >  W(~x) (17) 

Physically, this means that, at any position along the 
collector, the zero-input response reaches a limiting 
or stabilized value after a certain period of time which 
will be called 'The zero-input settling time' or simply 
'The settling time'; and is given by: 

tset = W(~x)/a (18) 

The window W(ox) becomes wider and consequently 
the settling time becomes larger as the distance X 
increases. On the other hand, t,et is independent of 
the initial temperature Ti. A graphical explanation of 
the settling time is shown in Fig 6. 

Radiation component (zero-state response) 

The domain of the function F(qJz, qbX) will be con- 
fined to a window W(~x), i.e. the function F(~bz, ~bX) 

, , e  

t / 
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Tii e - o x  

d v 

Time t 

T > O  
I 
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v 

T~<0 
(e,< e ) 

Fig 6 Graphical explanation of settling time at one 
collector-section. Two different inlet temperatures are 
considered and all other parameters are the same 

will only be considered within the time interval 0 <~ 
z ~< M, where: 

M = w(e~x)/~b (19) 

For any value of time t (Fig 7), the product 
[F(~bz, #;X).R(t-z)]  will have non-zero values over 
a certain interval of the dummy argument z. Outside 
this interval, the integrand of the convolution integral 
is equal to zero either because F = 0  or R( t - z )=O.  
Accordingly, the upper limit of integration z2 should 
be readjusted such that the convolution integral will 
span only the required interval of z. The new integra- 
tion limits are shown opposite to each case in Fig 7. 

According to the limits of integration given in 
Fig 7, the part of the actual daily radiation profile 
spanned by the convolution integral is shown in Fig 
8 for the corresponding cases displayed in Fig 7. 
Therefore, the effective part of the radiation profile 
is confined to a time band having a width M and 
continuously sliding such that its right edge coincides 
with the time under consideration. 

Fig 8 clarifies the physical significance of the 
time interval M. At any section of the collector, the 
instantaneous value of the zero-state response at any 
instant of time is affected by the radiant energy input 
during an interval of time M prior to this particular 
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Fig 7 Effective range of  the convolution integral in 
Eq (1) 
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instant. The  radiant energy input  at earlier t imes has 
almost no cont r ibut ion  to the instantaneous fluid tem- 
perature  at that part icular  instant. This  implies that 
the system has a l imited memory  which  goes back for 
an interval  of t ime equal  to M only. All radiat ion 
history which  took place before  this t ime is almost 
forgotten. Accordingly,  M is known as the 'Memory ' .  
To  be mor  e concise, M is the memory  at one part icular  
section of the collector. The  memory  M increases as 
we move  away from col lector  inlet, ie as X increases; 
this can be easily seen from Eq  (19) and Fig 4. Note 
that m e mory  is independen t  of the shape of the daily 
radiat ion profile. 

Relative magnitudes of  settling time and memory 

Eq (8) shows that the dimensionless parameter  j8 is 
always less than ~b. Thus  for any permissible error 
and at any section of the collector,  the w indow W(~x) 
is always greater than the window W(~x). At the same 
time, Eq  (6) shows that ~ is always less than ,1,. Accord- 
ingly, and from Eqs (18) and (19), M >  tsar, ie the 
memory  at any section is always greater than the 
settling time. 

When  the fluid tempera ture  is to be calculated 
at a certain distance X and t ime t, one or both  of the 
tempera ture  components  on the r ight-hand side of Eq  

, ilY- 
ff, 
R(t) ' ~  

o L , ,J '  

0 

R(t ) ~ . 1 . ~  
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t~< M < tss 

Time from 
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M<t~< tss 

ts,<t < t~, * M 

I I t u * M < t  
I I I I I I 
it 

~-M-.4 

Fig 8 The part of the daily radiation profile effec- 
tively contributing to the fluid temperature at time t 

Dynamic analysis of flat-plate collector 

(1) may  be simplified as explained before.  This  
depends  on the value of the t ime t relative to tset and 
M. In this respect, we may have any of the fol lowing 
three possibilities: 

Simplifiable 
Time,  t component(s)  

t < tset < M 
tse t ~< t < M Zfx 
tset < M <~ t Tfl, Tfz 

Determination of settling time and memory 

A compute r  program has been writ ten to evaluate the 
w indow wb, from Eq  (12), for different values of b 
and e; the results are given in Fig 9. Th e  window wb 
is equal  to zero if the maximum value of F(a, b), ie 
1 - e  -b, is less than e. This corresponds to values of 
b ~<- ln  ( 1 -  e). 

For  the sake of computa t ional  simplicity,  the 
w indow wb(b, ~) is approximated  by  the two straight 
lines shown dot ted in Fig 9. Th e  equat ions represent- 
ing these two straight lines are: 

Wb = --24(1og ~ + 1)b b ~</~ (20) 

and: 

Wb=2.22b-4 ( loge+l )  b > ~  (21) 

Th e  switching point  f rom Eq  (20) to Eq (21) is a t / )  
and is given by: 

/~ = [6 + 0.55/( log e + 1)] -1 (22) 

40 

30 

~== 2o 
E::IO -3 

O• I I I 

2 4 6 8 I0 
b 

Fig 9 Variation of  the window wb with b for different 
values of e 
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At any section of the collector, the settling time and 
memory can be determined by calculating the win- 
dows W(ax) and W¢~x) from Eq (20) or (21) and then 
dividing them by a and g, respectively 

Note that, for fixed values of b and e, the 
window Wb obtained from Eq (20) or (21) is greater 
than the actual value shown by the continuous curve 
in Fig 9. Accordingly, the two straight lines approxi- 
mation implies a reduction of the error below the 
specified value e. 

Factors affecting the settling time and memory 
It can be deduced from Eqs (4)-(6), (8), (18), and (19) 
and Fig 9 that both the settling time and memory,  at 
any section, increase with the increase of the ratio 
mpCp/rhfcf. Moreover, the memory increases as the 
plate-to-fluid heat transfer coefficient h decreases; and 
the settling time increases as the overall heat-loss 
coefficient U decreases. The difference between the 
settling t ime and memory decreases with the decrease 
of U; they tend to be equal in the theoretical case of 
zero loss. 

Considering typical actual values for the differ- 
ent parameters, the practical range of the memory and 
settling time can be estimated. The longest values are 
expected to be in the order of one hour; such a value 
will be met at the exit of a collector with high absorber 
heat capacity, heavy insulation, and low fluid-stream 
heat capaci ty  On the other hand, they may be as short 
as one or two minutes close to the inlet of a collector 
with low absorber heat capacity, light insulation, and 
high fluid-stream heat capacity. 

Approximation of F 
A further simplification of the fluid-temperature 

calculation can be achieved through approximating 
the function F by a relatively simple expression. It 
can be shown from Eq (12), by expanding the Bessel 
function and integrating, that: 

~.Tb'[ ,~1 ai]  
1 - e -b - e -b ~ ~ 1 - -  e - a  - -  ( 2 3 )  F(a, b) 

i = l  /=oflJ 
The infinite summation may be truncated to ( n + l )  
terms; consequently,  Eq (23) can be rearranged into 
an approximate form given by: 

F(a, b ) = C + e  -a ~ Cja j (24) 
j = 0  

where: 

. b k + l  
Ci=e-bk~=,(k+~l. fl 1 = 0 , 1  . . . . .  n (25) 

and: 

C = 1 - (e -b + Co) (26) 

The coefficients Cj of the polynomial  are interrelated 
by the recurrence relation: 

Cj=(j+I)Cj+I+e bb~+l/[(j+l)!j!] C~+1 = 0 
(27) 

The error in F(a, b), as given by the simple approxi- 
mate expression (Eq (24)), increases with the increase 

of either of the arguments a or b. This error can be 
reduced below any arbitrary value by raising the 
degree n of the polynomial  in a. The restriction of 
the domain of F(a, b) within the window Wb helps 
to keep the degree n at reasonably small values. A 
number  of computat ional  trials were made for differ- 
ent values of b; these trials showed that a suitable 
value of n which will keep the maximum error in 
F(a, b) at a = Wb, far below one percent is given by: 

n = integer part of (b + 8) (28) 

over the range 0<~ b<~ 5 which covers all practical 
values of the products fiX or ~bX. 

Simplified calculation of the fluid temperature 
T,(X, t) 
The introduction of the settling-time and memory 
concepts together with the consequent approximation 
of the function F are the bases for the simplified 
calculation method described below: 

1. Zero-input response: at any time t < tse t the zero- 
input response is given by: 

Try(X, t )=  T~e-~X[1-F(at, fX)]  t<tset (29) 

The funct ion F(at, f X )  is calculated using Eqs (24)- 
(26) and (28). At times beyond the settling time, Ttl 
will be found from: 

Try(X, t)= Tie -~x t/> t~t (30) 

2. Zero-state response: the normalized radiant input 
B(t) may be expressed by a polynomial  in t ime of 
degree m : 

{0~= aJ ti O<t<t~  R(t) = o (31) 

t/> ts~ 

where the coefficients aj can be obtained by fitting 
the curve sketched in Fig 2. Considering typical daily 
radiation profiles; it was found that m is of the order 
of 4 to 6. It can be shown, from Eq (31), that: 

R ( t -  z) = ~ Ajz j (32) 
j = 0  

where the coefficients Aj are given by: 

Aj = (-1) j 
i! 

,=j(i_j)!j----------~a~t'-~__ j = 0 , 1  . . . . .  m 

(33) 

Substituting from Eqs (24) and (32), the integrand of 
the convolution integral, in Eq (1), will be put  in the 
form: 

e -~z F(q ,z ,  6 x ) n ( t -  z )  = 

m + n  

e -(~+e)z ~ B~zi+e -~z ~ Di z~ (34) 
i =0  i=O 

where: 

Di = CAi i = O, 1 . . . .  , m (35) 

k 2 
Bi = ~. ~CjAi_j i = O, 1 . . . . .  n + m (36) 

jffikT 
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and: 

k~=0,  k2=i  f o r 0 ~ i < ~ m  
(37) 

kl = i - m, k2 = min (i, n) 

for m < i < ( m + n )  

Consequent ly ,  it can be shown, through a lengthy 
integrat ion and manipula t ion,  that the zero-state 
response is given by: 

Tf2(X, t) = - e - ~  

[m+. ,Z ]Iz= x e - ~  Y. Giz i+ ei zi (38) 
i =0 i =0 z 1 

where:  

m+, Bij! 
Ci=  Y" q,)J-'+'i! (39) j=~ ( y +  

- ~ Dd! 
P, - • (40) ~=i "YJ-i+l i[ 

and the two limits z~ and z2 are shown, for different 
eases, in Fig 7. 

The  fol lowing reeurrenee relations may help 
to reduce  the computa t ional  effort: 

G i = [B~+(i + 1)G,+x]/(3'+ 6) 

i=O, 1 , . . . , n + m  
G,+m+ 1 = 0 

ei  = [D~+ (i + 1)P~+,]/3, 
i = 0 ,  1 , . . . , m  
Pm+l = 0 

It can be seen from Eq  (15) that z~ is equal  to zero 
for all instances dur ing sunlight hours. Thus,  Eq  (38) 
reduces to: 

Tf2(X , t) = "Y(Go+ P o ) -  "y e - ~  
[ m4-n ~ ] 

x e- ~'z~ y. i i Gizz+ Piz2 (41) 
i =0 i =0 

for t <~ t~, and for instances after t,~ + M, the zero-state 
response is equal  to zero. 
3. F lu id  temperature Tf(X, t): the fluid tempera ture  
at any t ime and any posit ion along the col lector  is 
given by: 

Tf(X, t )=  Tfl(X , t)+ Tf2(X, t) (42) 

where  Tn(X,  t) is given by  Eq (29) or (30), whi le  
Tfe(X, t) is obta ined from Eq (38). The  choice  be tween 
Eqs (29) and (30) and the assignment of the appropri-  
ate values for z~ and z2 in Eq (38) depend  on the t ime 
at which  Tf(X, t) is to be calculated. A sample of the 
results is illustrated in Fig 10. 

C o n c l u s i o n  

In this paper,  two parameters relevant to the dynamic  
behaviour  of the fiat-plate solar col lector  are iden- 
tified; 'settling ti/ne" and 'memory ' .  The  physical  
meaning  of these parameters is brought  out by  con- 
sidering the nature of the f luid-temperature response 
as the resultant superposit ion of two components ;  
namely  the zero-input  response, due to the inlet fluid- 
temperature ,  and the zero-state response induced  by  

Dynamic  analysis of f lat-plate co l lector  
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Fig 10 Chronological variation of  the f luid tem- 
perature at different positions ( qb = 5, qJ = 25, "/=1.5; 
R = 0.5091 t - 0 . 1 0 0 1 9  t2+ 0.009118 t 3 -  0.000326 t a) 

the radiant  input. The  settling t ime is the per iod of 
t ime after which  the zero-input  response attains a 
l imiting constant value given by Eq  (17). On the other  
hand,  the memory  is a parameter  related to the zero- 
state response. The  instantaneous value of the zero- 
state response, at any instant of time, is shown to be 
affected only by the radiant input  during a definite 
interval of t ime just preceding this part icular  instant. 
This interval is called the memory  since all the earlier 
radiat ion history has no contr ibut ion  to the instan- 
taneous fluid temperature,  ie is forgotten. Based on 
the definitions of the settling t ime and memory ,  a 
simplified computa t ion  t echn ique  for de termining 
the f luid-temperature response is presented in this 
paper. 

A computer  program has been writ ten to calcu- 
late Tf(X, t) fol lowing the proposed simplified com- 
putat ional  technique.  This  program was tested for a 
number  of cases covering the range from extremely 
short to extremely long settling times and memories.  
The  results were compared  with those obta ined by  
other exact methods  l' . In all the test cases, with n 
obta ined from Eq  (28) and for an accuracy e of 0.0001, 
the error in Tf(X, t) was found  to be less than 0.1% 
at all t imes of the day and all sections of the collector. 
In pract ice the ratio Hma×/U will have a maximum 
value of the order of 100. Accordingly,  and from Eq 
(11), the error in the actual fluid temperature  Of(X, t) 
will be less than 0.1 °C. 

The  computa t ion  t ime has been reduced  to less 
than 20% of that required for the numerical  integra- 
tion or infinite summat ion techniques  t'2. Most of this 
saving is ach.'_'eved in the calculat ion of the zero-state 
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response  Tf2 s ince  the  e v a l u a t i o n  of this  c o m p o n e n t  
represents  the  major  c o m p u t a t i o n a l  effort. I n  most  
p rac t ica l  cases, however ,  errors in  Of(X, t) m u c h  h i g h e r  
t h a n  that  m e n t i o n e d  above  can  be tolerated.  The re -  
fore, the  va lue  of e m a y  be taken  h ighe r  t h a n  0.0001 
a n d  the  va lue  of n can  be r e d u c e d  b e l o w  that  g i ve n  
by  E q  (28). C o n s e q u e n t l y ,  a fu r the r  sav ing  in  the  
c o m p u t a t i o n  t ime  can  be  ach ieved .  
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